活动地址:CSDN21天学习挑战赛
什么是动态规划首先很多人问,何为动态规划?动态规划(Dynamic Programming,DP)是运筹学的一个分支,是求解决策过程最优化的过程。通俗一点动态规划就是从下往上(从前向后)阶梯型求解数值。
(资料图片仅供参考)
那么动态规划和递归有什么区别和联系?
总的来说动态规划从前向后,递归从后向前,两者策略不同,并且一般动态规划效率高于递归。
不过都要考虑初始状态,上下层数据之间的联系。很多时候用动态规划能解决的问题,用递归也能解决不过很多时候效率不高可能会用到记忆化搜索。
不太明白?
就拿求解斐波那契额数列来说,如果直接用递归不优化,那么复杂度太多会进行很多重复的计算。
但是利用记忆化你可以理解为一层缓存,将求过的值存下来下次再遇到就直接使用就可以了。
实现记忆化搜索求斐波那契代码为:
而动态规划的方式你可以从前往后逻辑处理,从第三个开始每个dp都是前两个dp之和。
当然动态规划也能有很多空间优化,有些只用一次的值,你可以用一些变量去替代。有些二维数组很大也可以用一维数组交替替代。当然动态规划专题很大,有很多比如树形dp、状压dp、背包问题等等经常出现在竞赛中,能力有限这里就将一些出现笔试高频的动态规划!
连续子数组最大和给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
输入
连续子数组最大乘积 给你一个整数数组 nums ,请你找出数组中乘积最大的连续子数组(该子数组中至少包含一个数字),并返回该子数组所对应的乘积。
示例 :
输入
最长公共子序列 最长公共子序列也成为LCS.出现频率非常高!
给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。
一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
例如,“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。 两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。
拿b c d d e和 a c e e d e举例,其的公共子串为c d e。如果使用暴力,复杂度太高会直接超时,就需要使用动态规划。两个字符串匹配,我们设立二维dp[][]
数组,dp[i][j]
表示text1串第i个结尾,text2串第j个结尾的最长公共子串的长度。
这里核心就是要搞懂状态转移,分析dp[i][j]的转换情况,当到达i,j时候:
如果text1[i]==text2[j],因为两个元素都在最末尾的位置,所以一定可以匹配成功,换句话说,这个位置的邻居dp值不可能大于他(最多相等)。所以这个时候就是dp[i][j]=dp[i-1][j-1] +1;
如果text1[i]!=text2[j],就有两种可能性,我们知道的邻居有dp[i-1][j],dp[i][j-1],很多人还会想到dp[i-1][j-1]这个一定比前两个小于等于,因为就是前面两个子范围嘛!所以这时就相当于末尾匹配不成,就要看看邻居能匹配的最大值啦,此时dp[i][j]=max(dp[i][j-1],dp[i-1][j])。
所以整个状态转移方程为:
dp
最长公共子串 给定两个字符串str1和str2,输出两个字符串的最长公共子串。
例如 abceef 和a2b2cee3f的最长公共子串就是cee。公共子串是两个串中最长连续的相同部分。
如何分析呢? 和上面最长公共子序列的分析方式相似,要进行动态规划匹配,并且逻辑上处理更简单,只要当前i,j不匹配那么dp值就为0,如果可以匹配那么就变成dp[i-1][j-1] + 1
核心的状态转移方程为:
dp
分析: 这个问题其实就是上面有几个pat的变形拓展,其基本思想其实是一致的,上面那题问的是有几个pat,固定、且很短。但这里面t串的长度不固定,所以处理上就要使用数组来处理而不能直接if else。
这题的思路肯定也是动态规划dp了,dp[j]
的意思就是t串中[0,j-1]长字符在s中能够匹配的数量(当然这个值从前往后是动态变化的),数组大小为dp[t.length+1]
。在遍历s串的每一个元素都要和t串中所有元素进行对比看看是否相等,如果s串枚举到的这个串和t串中的第j个相等。那么dp[j+1]+=dp[j]
。你可能会问为啥是dp[j+1],
因为第一个元素匹配到需要将数量+1,而这里为了避免这样的判断我们将dp[0]=1,这样t串的每个元素都能正常的操作。
但是有一点需要注意的就是在遍历s串中第i个字母的时候,遍历t串比较不能从左向右而必须从右向左。因为在遍历s串的第i个字符在枚举dp数组时候要求此刻数据是相对静止的叠加(即同一层次不能产生影响),而从左往右进行遇到相同字符会对后面的值产生影响。区别的话可以参考下图这个例子:
实现的代码为:
结语 至此,简单的动态规划算是分享完了。
大部分简单动态规划还是有套路的,你看到一些数组问题、字符串问题很有可能就暗藏动态规划。动态规划的套路跟递归有点点相似,主要是找到状态转移方程,有时候考虑问题不能一步想的太多(想太多可能就把自己绕进去了),而动态规划就是要大家对数值上下转换计算需要了解其中关系。
X 关闭
X 关闭